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The influence of lateral stresses on
brittle–ductile transitions in the
die-compaction of sodium chloride
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A model has been developed that accounts for the effect of lateral stresses on the

deformation of particles occurring during die compaction. This has been examined using the

model material sodium chloride. The lateral stresses were found to inhibit cracking of the

particles during compaction. Agreement between the theory and experimental results was

obtained.
1. Introduction
Both plastic and brittle deformation have been
observed in sodium chloride particles during die
compaction [1]. At a certain critical particle size there
was a transition between plastic flow (for small par-
ticles) and cracking (for large particles). Reasonable
agreement between theoretical predictions of the criti-
cal particle size, d

#3*5
and experimental measurements

determined from compaction of different size fractions
at comparable strain rates was obtained [1]. The
theory was based on critical stress intensity factors,
K

IC
, and indentation hardness, H, determined at

comparable strain rates in separate measurements.
However experimental deformation stresses deter-
mined from Heckel plots [2, 3] at large particle sizes
(above 100 lm) were greater than theoretical predic-
tions. This was attributed to simplifications in the
theory and/or the influence of other particles in the
powder bed. The purpose of this study is to explain
this discrepancy by examining the influence of lateral
stresses on crack growth which result from the interac-
tion of other particles within the powder bed and die
wall radial forces.

2. Theoretical considerations
For the axial splitting of a block of a brittle solid
(Fig. 1) by a compressive load (X) with the applica-
tion of a lateral compressive load (X

L
) , it has been

shown [4]
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where w, d and a are shown in Fig. 1 and K is the
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critical stress intensity factor. This relation shows that
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causes a linear increase in X and that the increase
is proportional to the crack length, a. Long cracks
are therefore more inhibited than short cracks. Experi-
ments [4] have confirmed the validity of this
approach.

The purpose of this paper is to show that for die
compaction, Equation 1 can be used to derive further
equations which relate the deformation stress, r

$
, to

the brittleness of the particles, accounting for the
influence of lateral forces.

The lateral force, X
L
, is a function of the radial

stress component as a result of the interaction of
other particles in the compacted powder bed. The
radial stress, r

3
, will be a function of Poisson’s ratio,

porosity, contact area, interparticle and die-wall fric-
tion. For the purpose of the derivation, the lateral
force, X

L
, is taken as a function of the radial stress

component, i.e.
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where C
A

is the contact area. Similarly for the axial
force, X, a similar equation can be derived relating the
contact area, C

A
, and the axial stress or deformation

stress, r
$
, in Equation 3
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A
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It is assumed that the contact area, C
A
, is a function

of the platten size, w, and the particle size, d, which
presses onto the crack (Fig. 1) e.g. C

A
"wd as in

Kendall’s original derivation. Similarly the contact
area for the lateral force is assumed to be of the
same order. However the remaining problem is then
to define the platten width in terms of the diameter
of the particle, d. The change in failure mode from

splitting to yielding takes place at a platten size of
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Figure 1 Compression geometry with a lateral force, X
L
, which

inhibit the bending of the struts.

Figure 2 Various modes of crystal deformation during compressive
loading.

w/d"1/2 as shown by Kendall [4] and is represented
by Equation 4
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where r
:
is the yield strength.

Kendall [4] showed that there were two wedge to
particle size ratios, w/d, where there is a transition
from fracture to plastic yielding. At the low w/d ratios
[4] Kendall proposed that the wedge would act as an
indenter and yielding would occur, although splitting
might well occur due to the wedging action of the
indenter. However, if a material was sufficiently soft or
tough then splitting will never occur. At higher w/d
ratios (at w/d(1) yielding under the platten is also
expected, since buckling of the struts is reduced
because of radial movement from the action of the
platten (i.e. frictional forces). The various modes are
illustrated in Fig. 2, both these transitions are gover-
ned by Equation 4 [4]. Using this equation Kendall
[4] explained the well known influence of platten
geometry on compressive strength and the often
reported variation in the compressive strength of
materials could be rationalized based on changes in
failure mode.

Using a ratio of w/d"1/2 (where pure buckling of
the struts occurs), C "dw and since the radial stress
A
is related to the deformation stress, i.e. r

3
/r

$
"(
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then Equations 2 and 3 become
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Substituting these in Equation 1 gives
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Using w/d"1/2 and rearranging Equation 7

r
$
"A

32

3 B
1@2 K

IC
d1@2

#

4(r
$
a

d
(8)

It should be noted that when the crack length a is zero,
as at the brittle/ductile transition, e.g. d"d

#3*5
, then

the first term in Equation 8 is the same as that derived
[5] (i.e. Equation 9, as used in previous work [1]).
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When the mode of deformation of the powder bed is
dominated by brittle fracture then r

$
"r

&
(fracture

stress) and Equation 9 can be used to determine the
fracture stress. Where plastic flow is the dominant
deformation mechanism (e.g. below the brittle/ductile
transition) then r

$
"r

:
(yield stress).

Furthermore Equation 8 can be rearranged to give
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If lateral stresses are modifying the deformation stress
then a plot of a/d versus 1/r

$
d1@2 for different particle

size fractions, d, will be linear. The value of the radial
to axial stress ratio, ( and K

IC
can be determined from

the slope and intercept, respectively.
Finally Equation 8 can be rearranged to give a more

usable function to allow prediction of the deformation
stress to be determined
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3. Experimental procedure
3.1. Materials
Sodium chloride (vacuum-dried containing hexa-
cyanoferrate II, an anti-caking agent) was obtained
from Chemicals and Polymers Ltd, ICI Runcorn.
A range of sizes down to 32 lm was used and the
material was sieved using a sieve shaker. Additionally
small fractions between 105 and 20 lm were obtained
by grinding the 355 lm fraction using a mortar and
pestle. Various fractions of the ground material were
obtained by sieving using the sieve shaker and an air
jet sieve. Median particle size data were calculated

form the sieve fraction data.



3.2. Compaction data
Compression was carried out as described previously,
the various particle size ranges were compacted using
the compression simulator [1]. The deformation
stress, r

$
, was determined at a speed of 0.033 mms~1,

as described previously [1] using the following modi-
fied Heckel equation
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where r
$

is the deformation stress of the particles,
whether it is a plastic deformation stress or a fracture
deformation stress, or a combination of the two. Data
for sodium chloride was adapted from [1] and repro-
duced in tabular format (Table I) to allow reanalysis of
the data.

Tablets were prepared using 590 mg of material for
the particle sizes, 64, 116, 196, 328 and 725 lm, respec-
tively, using the compression simulator to allow the
fractographic analysis to be performed. A compres-
sion pressure of 100 MPa was used because this would
allow both fracture and flow to occur within the
powder bed (e.g. higher than the yield and fracture
stress for sodium chloride).

3.3. Fractographic analysis
Tablets were gold sputter-coated using the coater
(Emscope) and the tablet surfaces examined using
scanning electron microscopy (Hitachi S2300). For

TABLE I Deformation stresses for the various fractions of sodium
chloride, at a punch velocity of 0.033 mms~1

Material Median r
$

D
0

D
A

size (lm) (MPa)

Fraction A 26 89.0 0.550 0.553
Fraction B 36 87.5 0.553 0.566
Fraction C 49 80.8 0.559 0.556
Fraction D 64 76.8 0.549 0.576
Fraction E 83 72.8 0.552 0.566
Fraction F 116 70.5 0.617 0.622
Fraction G 138 70.7 0.627 0.629
Fraction H 196 66.8 0.631 0.626
Fraction I 328 64.7 0.620 0.634
Fraction J 725 64.5 0.589 0.617

Figure 3 SEM photomicrograph of compacted sodium chloride

crystals of 725 lm diameter.
each particle size, crack lengths, a and actual particle
diameters, d were determined (Fig. 3 shows an
example for a particle size of 725 lm) from a number
of photomicrographs for each size. This data was
examined below in qualitative analysis.

4. Results and discussion
Data from the fractographic analysis is presented in
Fig. 4, as a plot of crack length versus particle dia-
meter. A two-term polynomial gave the best fit to the
data, with a correlation coefficient of 0.9044 and
a standard error of 20.06. The equation of the line is as
given in Equation 13

a"!7.789858#0.240835d#0.000369d2 (13)

The line intercepts the particle diameter axis at
30.9 lm, very close to the critical particle size, d

#3*5
, of

33 lm determined experimentally [1].
In Equation 4 above it was noted that the ratio of

the wedge size to the particle size, w/d"1/2. It is
interesting to note that in Fig. 3 this was observed in
one of the photomicrographs with the crack length
extending about half the diameter. Furthermore there
seems to be some crack branching as a result of lateral
forces.

It is interesting to speculate whether changes in the
ratio of the wedge size to the particle size, w/d would
affect the cracking or plastic deformation processes
within the compact. Equation 4 can be used to ex-
amine these effects from a theoretical aspect by
determining the effect of w/d on both particle size and
the test geometry factor, A"(32/3)1@2, using values
of K

IC
"0.18 MPam1@2 and r

:
"90MPa [1] as con-

stants (Fig. 5). Both lines represent the points where
the processes change from yielding to fracture (split-
ting), therefore when w/d"1/2 for large particle sizes
and particle sizes below the brittle/ductile transition,
splitting and yielding of particles occur respectively.
The processes at low and high w/d values are illu-
strated in Fig. 2 where, in both cases, plastic yielding
will occur for a large range of particle sizes.

Fractographic evidence for the occurrence of these
other deformation modes was examined in a number
of photomicrographs. At low w/d ratios and larger

Figure 4 Crack length, a, versus particle diameter, d, for compacted
sodium chloride crystals (examination of tablet surfaces): (r) 64 lm;

(#) 116 lm; (j) 196 lm; (m) 328 lm; (.) 725 lm.
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Figure 5 Particle size and A versus w/d for sodium chloride.

Figure 6 SEM photomicrograph of a sodium chloride crystal of
size 180 lm illustrating that the corner of a crystal can act as an
indenter.

Figure 7 SEM photomicrograph of a sodium chloride crystal of
size 328 lm acting as a blunt indenter.

particle sizes (Fig. 5), where a corner of one crystal
would act as an indenter into the primary particle (see
Fig. 2) deformation would be plastic flow. Evidence
for this type of deformation is shown in Fig. 6, al-
though the indenter is also acting as a wedge in this
case causing fracture. It is also interesting to note that
corner blunting can also occur (Fig. 7) indicative of
a size dependency of indenter size (corner of a sodium
chloride crystal) on plastic flow. At higher values of
w/d ratios and particle sizes (Fig. 5) particle squashing
or barrelling (as in Fig. 2) occurs with fragmentation

as is evident from Fig. 8.

4186
Figure 8 SEM photomicrograph of a sodium chloride crystal of
size 328 lm illustrating squashing or barrelling.

It is important to analyse the effect that changes in
deformation mode (which is evident from the photo-
micrographs) on modelling the influence of lateral
stresses during compaction. Both the contact zone and
the ratio w/d might not be constant (e.g. may not be
0.5 as in Kendall’s original derivation (see Fig. 1)).
Therefore, the geometry of the cracking process which
is essentially modelled on single particle breakage
using a specific test geometry factor, a, might not be
constant and therefore Equations 8, 10 and 11 will not
be predictive.

In Fig. 5 it can be seen that the value of a at the
mid point e.g. w/d"0.5 is equivalent to (32/3)1@2 or
3.2660 corresponding to Kendall’s original derivation,
as represented by Equation 9. At the critical particle
size for sodium chloride the brittle/ductile upper and
lower transitions modes for fracture and flow are the
same (i.e. corresponding to the brittle/ductile tran-
sition, giving a predicted d

#3*5
of 42.7 lm; the same

value as in the previous paper [1]). Therefore if the
particle size is below this point the platten width has
no effect on the mechanism because the particle will
always deform plastically. The line in Fig. 5 represents
the transition from fragmentation to flow as the con-
tact between deforming particles is changed (e.g.
below the line yielding occurs whereas above the
line cracking will occur). Over a wide range of w/d
values, from approximately 0.3 to 0.7, the value of
a does not vary significantly (e.g. from a maximum of
3.8881 at w/d"0.3 and 0.7 to a minimum of 3.2660
at w/d"0.5). Therefore during deformation within
the powder bed w/d must be on average 0.5, and
other types of deformation must be minimal and con-
sequently a"(32/3), or equivalent to (32/3)1@2 in
Equation 9.

In Fig. 9 a plot of a/d versus 1/r
$
d1@2 which gives

an intercept 1/4( and a slope of (32/3)1@2 K
IC
/4(, as in

Equation 10. From this a value of K
IC
"0.1507 MPam1@2,

and a value of radial to axial stress, (, of 0.36 is found
from the slope and intercept, respectively. This com-
pares with a value of K

IC
"0.18 MPam1@2 [1] and

indicates that the theory seems to fit the data well.
Additionally when r

$
"r

:
, i.e. when no cracks are

present in the particles or a/d"0, then the particle
size, d can be determined from the intercept on the
#3*5
x-axis, 1/r

:
d1@2, (e.g. when d"d

#3*5
). Using a value of



Figure 9 Plot of a/d versus 1/r
$

d1@2 for sodium chloride crystals
during compaction.

r
:
"90 MPa [1] the value of d

#3*5
determined from

the intercept is 29.9 lm; again in good agreement with
the experimental data [1]. In addition, the value of
the radial to axial stress, (, agrees with that as
used by Duncan-Hewitt and Weatherly [6] in their
modelling of uniaxial compaction for plastic materials
(value of 0.4).

It is interesting to note the similarities in the Dun-
can-Hewitt and Weatherly approach [6] to that used
here. They essentially used both Vicker’s hardness
data (the stress term) and contact area (to determine
the porosity term) to predict the densification for
sodium chloride and potassium chloride samples ac-
cording to Heckel plots [6], whereas in this approach
only the stresses are modelled.

Finally an additional proof of the applicability of the
model to the die compaction of sodium chloride can be
determined by using values of K

IC
"0.15 MPam1@2,

("0.36 and the algorithm for crack length, a, (Equa-
tion 13) in Equation 11 for a range of particle sizes (d).
This is shown in Fig. 10, together with the fracture
stress line (no lateral forces applied) generated using
K

IC
"0.15 MPam1@2 as the constant in Equation 9.

As would be expected the fracture stress line is much
lower than the experimental data, and the predicted
data using the model. The predicted data using
("0.36 gives good agreement for particles sizes
below 100 lm but a poorer fit between 116—328 lm.
However with a value of ("0.41, a better fit to the
experimental data over a wider range of particle sizes
is obtained (20—350 lm). It should be noted however
that at 725 lm the predicted deformation stress for
("0.41 is 35 MPa greater than experiment, however
when ("0.36 the predicted value is 64.1 MPa which
is in good agreement with experiment (Table I).

This difference may arise because the crack length

at large particle sizes is a different function of the
Figure 10 Stress versus particle diameter: (h) experimental data;
(-·-·-) ("0.36 (Equation 11); (——) ("0.41 (Equation 11); (- - -)
fracture stress curve (Equation 9) using K

IC
"0.15 MPam1@2 as the

constant in both Equations 11 and 9.

particle diameter. A value of a"316.4 lm was deter-
mined from Equation 11 using values of d"725 lm,
K

IC
"0.15 MPam1@2, and ("0.41; this is much

lower than that used in Equation 13, thus supporting
this hypothesis. Additionally the largest particle size
shows the greatest variability in crack sizes (Fig. 4)
(e.g. mean crack length "370.7 lm with a standard
deviation of 106.8 lm). The fact that the variability is
greater at larger particle sizes might be because of
additional wall effects which have not been taken into
account, as the particle size represents 7% of the total
die diameter (10 mm). Despite this anomaly, the
applicability of the model over a range of particle
sizes typically encountered during compaction of
pharmaceutical powders (which tend to be (200 lm)
is very good. However, for the model to be applied
universally, the relationship between crack length
and particle size needs to be determined for a wider
number of materials.
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